Mode Coupling and Anomalous Dissipation in Mhd Turbulence
نویسنده
چکیده
An energy conserving model of MHD turbulence is described that predicts both mode coupling and turbulent dissipation. The dissipation takes the form of anomalous resistivity and viscosity due to turbulent magnetic fields. The model predicts a dualcascade of energy to large wave numbers and magnetic flux to small wave numbers. Turbulent rearrangement of equilibrium magnetic shear gene rates resonant fluctuations via a mixing length process. The effect of tearing mode turbulence on the disruptive~ instability in tokamaks is discussed. i
منابع مشابه
Compressible Mhd Turbulence: Mode Coupling, Anisotropies and Scalings
Compressible turbulence, especially the magnetized version of it, traditionally has a bad reputation with researchers. However, recent progress in theoretical understanding of incompressible MHD as well as that in computational capabilities enabled researchers to obtain scaling relations for compressible MHD turbulence. We discuss scalings of Alfven, fast, and slow modes in both magnetically do...
متن کاملAnomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma
In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology...
متن کاملCompressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, new regime and astrophysical implications
We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetically dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a techni...
متن کاملCompressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime, and astrophysical implications
We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetic pressure dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a t...
متن کاملConstraints on Stirring and Dissipation of Mhd Turbulence in Molecular Clouds
We discuss constraints on the rates of stirring and dissipation of MHD turbulence in molecular clouds. Recent MHD simulations suggest that turbulence in clouds decays rapidly, thus providing a significant source of energy input, particularly if driven at small scales by, for example, bipolar outflows. We quantify the heating rates by combining the linewidth-size relations, which describe global...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014